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A B S T R A C T  

A time dependent f i n i t e  d i f fe rence  technique was used t o  compute the  

flow f i e l d  i n  a nozzle  t h r o a t  region. 

a s  a n  asymptotic s o l u t i o n  i n  time. This r e p o r t  descr ibes  the  f i n i t e  

d i f f e r e n c e  s o l u t i o n  and presents  comparisons with both experimental  data  

and the  t h e o r e t i c a l  work of Sims (Ref. 3). 

Steady s t a t e  r e s u l t s  a r e  obtained 
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S U M M A R Y  

I 
I 

A method was developed t o  compute the  e n t i r e  flow f i e l d  i n  the  t h r o a t  

reg ion  of a converging-diverging nozzle .  The time-dependent equat ions 

descr ib ing  the  flow of an inv i sc id ,  i d e a l ,  non-heat-conducting gas were 

solved by a numerical f i n i t e  d i f f e rence  technique descr ibed by Thonunen 

(Ref. 5) .  

t he  time dependent equat ions of  motion. 

Steady s t a t e  results a r e  obtained a s  an  asymptotic s o l u t i o n  of  

A FORTRAN program was w r i t t e n  f o r  t he  CDC 3200 d i g i t a l  computer and 

t w o  check cases  were run. The f i r s t  case  was compared with the  so lu t ions  

of Sims (Ref. 3) and the  second was compared with experimental  data  (Ref. 6 ) .  

Comparison with experimental  data was e x c e l l e n t .  



I N T R O D U C T I O N  

Regions of mixed subsonic-supersonic flow have gene ra l ly  escaped accu ra t e  

t h e o r e t i c a l  a n a l y s i s  due mainly to the  mixed na tu re  of the  governing d i f f e r e n -  

t i a l  equat ions ;  the  equat ions being e l l i p t i c ,  parabol ic  , and hyperbol ic  i n  the  

subsonic ,  s o n i c ,  and supersonic  port ions of t he  flow, r e spec t ive ly .  I n  super-  

son ic  flow, the  w e l l  known method of c h a r a c t e r i s t i c s  provides a f a s t ,  accu ra t e  

method of  a t t a c k  provided t h a t  an i n i t i a l  data  l i n e  is known. This then ,  is the  

goal  of most t ransonic  flow so lu t ions .  That i s ,  t o  compute the  subsonic po r t ion  

of  t he  f i e l d ,  through the  son ic  t r a n s i t i o n  reg ion ,  and f a r  enough downstream o f  

t h e  son ic  l i n e  t o  provide a n  accu ra t e ,  supersonic  i n i t i a l  da ta  l i n e  f o r  cont inu-  

a t i o n  of  t he  flow c a l c u l a t i o n  by the  method of  c h a r a c t e r i s t i c s .  

A c l a s s i c  example of  t he  mixed flow problem is  i n  the  t h r o a t  region of a 

nozzle  (Fig. 1). I n  e a r l i e r  works, t he  problem was a t tacked  by series expansion 

of t he  equat ion f o r  t he  p o t e n t i a l  func t ion .  Coef f i c i en t s  of t he  series were 

then obtained by some type of numerical a n a l y s i s ,  such a s  the  i t e r a t i v e  proce- 

dure devised by Oswatitsh and Rothstein (Ref. 1). Unfortunately,  t he  i t e r a t i o n  

r equ i r e s  numerical d i f f e r e n t i a  t i on ,  and the  procedure i s  uns t ab le  due t o  the  

e l l i p t i c  na ture  of t he  flow equat ions.  I f  t he  nozzle  t h r o a t  is of  small r ad ius  

of curva ture ,  s e v e r a l  i t e r a t i o n s  may be requi red  with poss ib ly  d i s a s t r o u s  

resul ts .  
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Another s o l u t i o n  i s  t h a t  of  Sauer (Ref. 2 )  which i s  a series expansion 

about t he  c r i t i c a l  l i n e .  

series and should be used only  for nozzles  with l a r g e  r a d i i  of curva ture  a t  

t h e  t h r o a t  wal l .  

Sauer 's  method contains  only  two terms of the  

I n  re ference  3, Sims extended the  method of Sauer by adding more terms 

t o  the  series expansion. This should provide more accura te  r e s u l t s ,  e s p e c i a l l y  

f o r  a t h r o a t  with small  r ad ius  of curva ture .  Addition of more terms t o  the  

series presents  a most laborious t a s k ,  however, and i t  i s  q u i t e  c l e a r  from Si-' 

r e s u l t s  t h a t  t he  series i s  not  yet c losed f o r  nozzles having very small r a d i i  

of curva ture  . 
Since i n s t a b i l i t y  is a major drawback t o  most numerical so lu t ions  of  t he  

e l l i p t i c  flow equat ions ,  a so lu t ion  is posed he re  which circumvents t he  bas i c  

i n s t a b i l i t y  problems. 

The b a s i c  idea is  t o  numerically i n t e g r a t e  the  t i m e  dependent flow equat ions ,  

imposing s t eady  s t a t e  boundary condi t ions a t  t he  w a l l ,  and obta in ing  a s t eady  

s t a t e  s o l u t i o n  asymptot ica l ly  with increas ing  time. The d i f f e r e n t i a l  equat ions 

descr ib ing  the  flow a r e  replaced by f i n i t e  d i f f e rence  equat ions and in t eg ra t ed  

with r e spec t  t o  t i m e .  

(see Refs. 4 ,  5 )  and is  of second order  accuracy. 

This scheme was shown t o  be a t  l e a s t  cond i t iona l ly  s t a b l e  

I n  t h i s  s tudy  the  gas was assumed t o  be i d e a l ,  i n v i s c i d ,  and non heat-con-  

duct ing.  Also,  t h i s  program appl ies  on ly  t o  smooth nozz les ;  i .e .  t h e r e  can be 

no d i s c o n t i n u i t i e s  i n  the  w a l l  s lope .  The flow is axisyxmnetric o r  two dimen- 

s iona 1. 
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THEORY & EQUATIONS 

The equat ions governing the axisymmetric flow a r e  given with r e spec t  t o  

a c y l i n d r i c a l  coordinate  system x, r ,  9 a s  follows: 

W t  = F, + Gr + H (1) 

Where W ,  F ,  G and H a r e  the column vec tors  

The subsc r ip t s  t ,  x, r denote p a r t i a l  d i f f e r e n t i a t i o n ,  and 

E x -  
Y- 1 

Where p is the  dens i ty ,  P the  pressure ,  V i s  the  v e l o c i t y  of  the  gas ,  u 

and v a r e  the  components of V in t he  x, r d i r e c t i o n s  r e spec t ive ly ,  and Y i s  

the  r a t i o  of s p e c i f i c  hea t s .  

A l l  lengths  a r e  made dimensionless by the  r coordinate  of t he  wal l  a t  t he  

t h r o a t .  Fiow parameters a r e  non-d iens iona l ized  by 

V '  V = -  E Y P* a* 
P' PI p c -  P, 

where the  primes denote dimensional q u a n t i t i e s  and the  a s t e r i s k  (*) r e f e r s  

t o  the  sonic  va lues .  

The above equat ions a r e  wr i t t en  fo r  axisymmetric flow. Two dimensional 

flow equat ions a r e  obtained by rep lac ing  r by r e ,  where 

0 f o r  two-dimensional flow 
1 f o r  axisymmetric flow 

The vec to r  H f o r  two-dimensional flow is i d e n t i c a l l y  zero.  
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COMPUTATION SCHEME 

Assuming t h a t  W is  known over t h e  e n t i r e  flow f i e l d  considered a t  t = to, 

then  a t runcated Taylor series i n  t y i e lds  

W ( t o  + A t )  = W ( t o >  + W @ t  + W t t  ht2 + Oat3) ( 2 )  
2 

L e t  W a t  any po in t  i n  the  f i e l d  be denoted by W m,n 

where 

t = ut x = n h x  r = m &  

Then W t  can be evaluated a t  (1, m y  n)  by rep lac ing  equat ion (1) with the  

d i f f e rence  analog 

The value of W t t  may be computed by d i f f e r e n t i a t i n g  equat ion (1). 

W t t  = Fxt + G r t  + H t  

Now 

G2 =i -- 
w1 

W2 = Pur 

w3 = Pvr F3 = 'm 
W 1  

W4 = E r  

'3 + Pr 
G3 = - Ij; 1 

P -'2 [w4 + Pr] G4 = -% p4 + Pr] 
W1 

F4 - 
W 1  

(4) 

(5)  
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where repeated s u b s c r i p t s ,  ( j )  , r equ i r e  summation over t h a t  s u b s c r i p t ,  

and 

aw 
a t  The de r iva t ive  may be evaluated a s  i n  equat ion (3 ) .  F i n a l l y ,  the 

second o rde r  t e r m ,  W t t ,  is evaluated with a f i n i t e  d i f f e rence  analog of 

This scheme requ i r e s  the eva lua t ion  of  the  Jacobians c u i ,  j ,  p i ,  , tj i, 

and subsequent matr ix  mul t ip l i ca t ion  a t  each poin t .  

A simpler  scheme of equal  accuracy a s  out l ined  by Thomuen (Ref. 5 )  was 

used f o r  t he  present  program. The f i n i t e  d i f f e rence  equat ions and computing 

sequence a r e  out l ined  a s  follows: 

(Step 1) Compute W a t  (1 + 4, m -f: %, n * 4) and (1 + %, m,n) from the  

d i f f e rence  analog of  equat ion (1) 

W(I + %, m + %, n )  = 2 [w(I,m,n) + W(l,m'+ 1,n)l  

+ "( 2 2 4Ax [F(l ,m f l , n  + 1) -F(l,m * 1, n-1) 

, 
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1 + - 
4ar 

[ G ( l , m  i- 1 , n  f 1) -G(l,m - l , n  f 1) 

G ( 1 , m  + 1,n)  - G ( l , m  - l , n ) ]  + f [H(l,m,n f 1) 

1 + W(1,m - l , n ) ]  [F(l ,m,n + 1) -F(l,m,n - l)] 

(Step 2 )  Compute F ( l  + %,m,n f %), G(l + %,m f %,n), H ( l  + %,m,n) 

from the  W computed i n  equat ions ( 6 )  - (8), r e f e r r i n g  t o  the  a l g e b r a i c  forms 

of  W, F, G and H i n  equat ion ( 5 ) .  

(Step 3) F i n a l l y ,  compute W(l + l,m,n) with Wt centered a t  (t + A t ,  m y  n) 
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COORDINATE CHANGE 

The above equations were derived f o r  a c y l i n d r i c a l  coordinate  system. 

I n  o r d e r  t o  o b t a i n  a g r id  with equal mesh s i z e  i n  the  r d i r e c t i o n  a t  the 

wa l l ,  a s l i g h t  change of coordinates was made. 

L e t  s = s (x )  be a funct ion descr ibing the  wal l  boundary, then the  co- 

o r d i n a t e  change was made a s  follows. 

X = x ,  
( 9 )  

Equation (1) now has t h e  form: 

1 
W t = F x  - Y E  F y + ; G y + H  1 

S 

where t h e  prime denotes d i f f e r e n t i a t i o n  with r e spec t  t o  x. 

b a s i c  equations have become s l i g h t l y  more complicated due t o  the  coordinate  

change, t he  advantage gained i s  cons ide rab le  . 

Although the  

It is  e a s i l y  seen t h a t  the logic  required i n  a computer program is 

considerably reduced uslng the  X ,  P coordinate system. 

considerat ion,  however, l i es  i n  the p o s s i b i l i t y  of l o c a l  i n s t a b i l i t i e s  i n  

the f i n i t e  d i f f e r e n c e  scheme i f  the mesh s i z e  a t  t h e  wal l  should be much 

smaller than the s tandard mesh. I n  the X ,  Y coordinate  system, a constant  

value of  AY can be maintained throughout the e n t i r e  f i e l d .  

A more important 
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BOUNDARY CONJIITIONS 

Wall Boundary 

L e t  m = M den t the  nozzle w a l l  boundary. A s -  uming t h a t  f o r  any n ,  the 

po in t s  M - 1, M - 2 ,  M - 3 have been computed, t he  wa l l  po in t  i s  computed a s  

follows. 

Using the  th ree  preceding points M - 1, M - 2 ,  and M - 3, e x t r a p o l a t e  

W 1 '  w4, and P t o  m = M. 

Evaluate V from 

Then 

W 2  = W1V Cose 

W 3  = W1V S i n e  m e r e  8 = tan-' (s ' 1  

A second o r d e r  ex t r apo la t ion  equat ion f o r  a general  func t ion  Z is: 

Axis Boundary 

For a x i s  syrmnetric flow, the a x i s  boundary condi t ions a r e  q u i t e  simple. 

Since W 1  = P r  w3 = P v r  

W2 = Pur W4 = E r  

then W i  = 0 f o r  i = 1, 2 ,  3, 4 .  The pressure,  P ,  a t  t he  a x i s  is determined 

a s  follows. 

Evaluate Pr a t  a l l  po in t s  i n  t h e  f i e l d  m = 2, -- M a t  any M from 

then 
p = -  Pr 

r 
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Of course Pr = 0 a t  the a x i s ,  s o  t h a t  it is necessary t o  i n t e r p o l a t e  P 

from po in t s  o f f  t he  a x i s .  The pressure a t  po in t s  below the  a x i s  a r e  r e f l e c t e d  

from corresponding po in t s  above the a x i s  i n  o rde r  t o  u t i l i z e  a centered i n t e r -  

po l a  t ion  formula . 
L e t  t h e  x - a x i s  be denoted by m = 1. Then a n  i n t e r p o l a t i o n  formula f o r  

any func t ion  Z y i e lds :  

z (1) = 1/3 142 (2)  - z (311 

For two-dimensional flow, a d i f f e r e n t  procedure is used a t  t h e  a x i s .  

Here, use  i s  made of  the flow symnetry about t he  x - a x i s .  The a x i s  i s  de- 

s ignated by m = 2 ,  and t h e  l i n e  m = l i s  a mirror  image of t h e  l i n e  m = 3. 

The ax i s  po in t s  a r e  computed with t h e  same g m e r a l  procedure as  r e g u l a r  

flow f i e l d  po in t s .  

Downstream Boundary 

A coordinate  l i n e  x = constant a t  n = N i s  chosen a s  the  downstream boun- 

dary s e v e r a l  g r id  s t a t i o n s  downstream of the  son ic  l i n e .  

a long t h i s  l i n e  can be propagated upstream from t h i s  l i n e  due t o  the p r i n c i p a l  

N o  e r r o r s  generated 

of forbidden s i g n a l s .  A l i n e a r  ex t r apo la t ion  i s  t h e r e f o r e  s u f f i c i e n t  t o  o b t a i n  

f l o w  p rope r t i e s  a t  t he  downstream boundary. The e x t r a p o l a t i o n  equat ion used i n  

the present  program i s  

- 
'N - 'N-1 - 'N-2 

f o r  any funct ion Z. 
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Upstream Boundary 

To in su re  good upstream boundary cond i t ions ,  t he  i n l e t  t o  the nozzle 

is assumed t o  be a s t r a i g h t  pipe of s u f f i c i e n t  length t h a t  t h e  flow may 

be considered uniform i n  t h e  s t r a i g h t  s e c t i o n  of  t he  nozzle a t  some s t a t i o n  

n = 1. 

I .  

Supersonic flow is e s t ab l i shed  downstream of  the  t h r o a t  by in su r ing  

t h a t  t h e  mass flow Q a t  n = 1 i s  equal  t o  the  c r i t i c a l  mass flow. 

L e t  A = c ross  s e c t i o n a l  a r ea  of t he  nozzle ,  then 

Q = ( P'u'A) , = P*a*A* 

A t  each t i m e  s t e p ,  the mass flow is numerically in t eg ra t ed  ac ross  the 

t h r o a t  s e c t i o n .  

SNT 
Q = 2';10 W2dr = A* W2 - - (Pur)n = NT 

So t h a t  t he  a rea  r a t i o ,  AR,  is  computed from 

2 A* 
1 

The flow p rope r t i e s  a t  n = 1 a r e  computed from one-dimensional a r ea  

r a t i o  equat ions and 

W1 = P l r  w3 = 0 

W = P V r  W = E r  
2 1 1  4 
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UPSTREAM BOUNDARY 
FIG. 4 
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LOCAL FLOW PARAMETERS 

The va r i ab le s  Wi a r e  used in  the  program t o  s i m p l i f y  the computation 

scheme. Local flow p rope r t i e s  may be computed with the  following equat ions.  

2 

W 1  
r e  I. - v2 = w2 * + w32 P =  w2 

W 1 2  

For axis-symmetric flow, W1 = W2 = W3 = W4 = 0 a t  the a x i s .  Flow para- 

meters on the a x i s  must be computed by i n t e r p o l a t i n g  from po in t s  o f f  t h e  a x i s ,  

a s  was done f o r  P i n  the  a x i s  boundary c a l c u l a t i o n s .  

STABILITY 

It 

is cond 

was mentioned e a r l i e r  

t i o n a l l y  s t a b l e .  A 1 

t h a t  t h e  f i n i t e  d i f f e r e n c e  scheme presented he re  

near a n a l y s i s  was performed by a number of i n v e s t i -  

ga to r s  t o  e s t a b l i s h  a s t a b i l i t y  c r i t e r i o n  f o r  t h i s  type of technique. I n  p a r t i -  

c u l a r ,  Burstein (Ref. 4 )  shows a "safe" s t e p  s i z e  r e l a t i v e  t o  l o c a l  flow condi- 

t i o n s  t o  be given by 

where 

M = l o c a l  Mach number 

c = l o c a l  speed of  sound 

A = s p a c i a l  mesh s i z e  
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This s t a b i l i t y  c r i t e r i o n  was followed i n  the  p re sen t  work, t he  s t e p  

s i z e  A t  being computed i n i t i a l l y  based on son ic  flow and kept constant  

throughout t h e  e n t i r e  run. 

RESULTS 

This problem was programed f o r  t he  CDC 3200 d i g i t a l  computer, and 

two tes t  cases have been run. Figure 5 is  a sketch of t he  nozzle ind ica -  

t i n g  t h e  f i n a l  son ic  l i n e  pos i t i on  f o r  t he  f i r s t  case.  

The i n i t i a l  data a t  t = 0 for  t h i s  case was computed from one-dimensional 

a r ea  r a t i o  equat ions,  and a record was kept  a t  each t i m e  s t e p  of t he  value 

of  W1 a t  the t h r o a t  wa l l  posi t ion.  A f t e r  about 450 t i m e  s t e p s ,  W1 a t  t h i s  

po in t  was damped t o  wi th in  .05% of t h e  f i n a l  value (Fig. 6 ) .  The mesh s i z e  

f o r  t h i s  run was M x N 11 x 23 po in t s .  

Comparison of t he  son ic  l i n e  p o s i t i o n  measured from the  x-coordinate of 

t he  t h r o a t  with t h a t  computed by S i m s  (Ref. 3)  y i e l d s  agreement of about 2% 

a t  the nozzie a x i s  and 60% a t  the nozzle wal l .  L i t t l e  explanat ion can be 

given by the author  f o r  t he  r e l a t i v e l y  poor agreement a t  the wa l l .  It may 

be pointed o u t ,  however, t h a t  Sims work, which is  a n  ex tens ion  of Sauer I s  

series expansion method, is  based on the  v e l o c i t y  g rad ien t  on t h e  nozzle 

c e n t e r  l i n e  a t  t he  son ic  point .  It seems l i k e l y  t h a t  t h e  two methods should 

agree b e t t e r  a t  t he  i n t e r s e c t i o n  of the son ic  l i n e  and symmetry a x i s .  

Figure 8 shows the comparison of t h e  second case with the  experimental  

data of r e fe rence  6 .  Agreement i s  q u i t e  good, e s p e c i a l l y  i n  t h e  v i c i n i t y  of 

t h e  sonic  l i n e .  
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C O N C L U S I O N  

The time dependent f i n i t e  difference technique is a r e l a t i v e l y  simple,  

R e s t r i c -  s t ra ightforward method of so lu t ion  f o r  the nozzle t h r o a t  problem. 

t i o n s  on the flow equations a r e  not severe and could be relaxed i n  var ious 

ways. It is  poss ib l e ,  i n  p r i n c i p l e ,  t o  add the v i s c o s i t y  terms and some 

r e a l  gas e f f e c t s .  As a matter  of f a c t ,  Thomen (Ref. 5 )  has computed the  

viscous flow f i e l d  f o r  a s t r a i g h t  wa l l .  Of course the mesh s i z e  must  be 

considerably reduced near t he  wal l ,  which i n  t u r n  increases  computer run 

t i m e .  With the  present  mesh, the program computes about t en  time s t e p s  per  

minute. 

As the  program is  now w r i t t e n ,  i t  can handle only axisymnetric flow. 

It i s  a simple matter t o  incorporate a n  op t ion  t o  compute two dimensional 

flow, and t h i s  w i l l  be done i n  the near  fu tu re .  
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